주어진 확률 변수에 대한 확률 분포 간의 차이를 정량화 하는 것이 종종 바람직합니다. 이것은 실제 확률 분포와 관찰 된 확률 분포의 차이를 계산하는 데 관심이 있을 수 있는 머신러닝에서 자주 발생합니다. 이것은 Kullback-Leibler Divergence (KL 발산) 또는 상대 엔트로피와 같은 정보 이론의 기술과 KL 발산의 정규화 되고 대칭적인 버전을 제공하는 Jensen-Shannon Divergence를 사용하여 달성 할 […]
주어진 확률 변수에 대한 확률 분포 간의 차이를 정량화 하는 것이 종종 바람직합니다. 이것은 실제 확률 분포와 관찰 된 확률 분포의 차이를 계산하는 데 관심이 있을 수 있는 머신러닝에서 자주 발생합니다. 이것은 Kullback-Leibler Divergence (KL 발산) 또는 상대 엔트로피와 같은 정보 이론의 기술과 KL 발산의 정규화 되고 대칭적인 버전을 제공하는 Jensen-Shannon Divergence를 사용하여 달성 할 […]